WHAT IS CLAIMED IS: ## 1. A glycopeptide of formula I: (I) wherein: 5 R¹ is an amino containing saccharide group substituted on the amine with a substituent that comprises two or more (e.g. 2, 3, 4, 5, or 6) hydroxy (OH) groups; R^2 is hydrogen or a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$, R^f , $-C(O)R^f$, or $-C(O)-R^a-Y-R^b-(Z)_x$; R^3 is $-OR^c$, $-NR^cR^c$, $-O-R^a-Y-R^b-(Z)_x$, $-NR^c-R^a-Y-R^b-(Z)_x$, $-NR^cR^e$, or $-O-R^e$; 10 R^4 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and 10 15 a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$, R^f , $-C(O)R^f$, or $-C(O)-R^a-Y-R^b-(Z)_x$; R^5 is selected from the group consisting of hydrogen, halo, $-CH(R^c)-NR^cR^c$, $-CH(R^c)-NR^cR^e$, $-CH(R^c)-NR^c-R^a-Y-R^b-(Z)_x$, $-CH(R^c)-R^x$, and $-CH(R^c)-NR^c-R^a-C(=O)-R^x$; R^6 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and a saccharide group optionally substituted with $-NR^c-R^a-Y-R^b-(Z)_x$, or R^5 and R^6 can be joined, together with the atoms to which they are attached, form a heterocyclic ring optionally substituted with $-NR^c-R^a-Y-R^b-(Z)_x$; R^7 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, and $-C(O)R^d$; R⁸ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic; R⁹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic; R¹⁰ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic; or R⁸ and R¹⁰ are joined to form -Ar¹-O-Ar²-, where Ar¹ and Ar² are independently arylene or heteroarylene; R¹¹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic, or 25 20 R¹⁰ and R¹¹ are joined, together with the carbon and nitrogen atoms to which they are attached, to form a heterocyclic ring; R^{12} is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, $-C(O)R^d$, $-C(NH)R^d$, $-C(O)NR^cR^c$, $-C(O)OR^d$, $-C(NH)NR^cR^c$ and $-R^a-Y-R^b-(Z)_x$, or R^{11} and R^{12} are joined, together with the nitrogen atom to which they are attached, to form a heterocyclic ring; R¹³ is selected from the group consisting of hydrogen or -OR¹⁴; R¹⁴ is selected from hydrogen, -C(O)R^d and a saccharide group; each R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene; each R^b is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkynylene and substituted alkynylene, provided R^b is not a covalent bond when Z is hydrogen; each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and $-C(O)R^d$; each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic; R^e is a saccharide group; each R^f is independently alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, or heterocyclic; 15 20 25 10 5 R^{x} is a nitrogen-linked amino saccharide or a nitrogen-linked heterocycle; X^{1} , X^{2} and X^{3} are independently selected from hydrogen or chloro; each Y is independently selected from the group consisting of oxygen, sulfur, $$-S-S-, -NR^{c}-, -S(O)-, -SO_{2}-, -NR^{c}C(O)-, -OSO_{2}-, -OC(O)-, -NR^{c}SO_{2}-,$$ $$5 \qquad -C(O)NR^c-, -C(O)O-, -SO_2NR^c-, -SO_2O-, -P(O)(OR^c)O-, -P(O)(OR^c)NR^c-, -SO_2O-, -P(O)(OR^c)NR^c-, -P(O)(OR^c)N$$ $$-OP(O)(OR^c)O-, -OP(O)(OR^c)NR^c-, -OC(O)O-, -NR^cC(O)O-, -NR^cC(O)NR^c-, -OC(O)O-, -NR^cC(O)O-, -NR^cC(O)O$$ $$-OC(O)NR^{c}$$ -, $-C(=O)$ -, and $-NR^{c}SO_{2}NR^{c}$ -; each Z is independently selected from hydrogen, aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocyclic; $n ext{ is } 0, 1 ext{ or } 2; ext{ and }$ *x* is 1 or 2; or a pharmaceutically acceptable salt, stereoisomer, or prodrug thereof; provided the group R³ does not comprises more than one carboxy group; and provided the group R³ is not a substituent that comprises one or more saccharide groups and a carboxy (COOH) group; and provided the compound of formula I is not a compound of formula II: - a) wherein R^3 is OH; R^5 is hydrogen; R^{19} is -CH₂[CH(OH)]₄COOH; and R^{20} is -CH₂CH₂-NH-(CH₂)₉CH₃; or - b) wherein R^3 is OH; R^5 is hydrogen; R^{19} is hydrogen; and R^{20} is $-CH_2CH_2-N(C(O)-3,4,5-trihydroxycyclohex-1-en-1-yl)- (CH₂)₉CH₃ (R,S,R isomer).$ - 2. The glycopeptide of claim 1 wherein R^1 is an amino containing saccharide group substituted on the amine with a group comprising two or more hydroxy groups that is selected from $-R^a-Y-R^b-(Z)_x$, R^f , $-C(O)R^f$, and $-C(O)-R^a-Y-R^b-(Z)$. - 3. The glycopeptide of claim 1 wherein R¹ is a saccharide group of the formula: 15 wherein R^{15} comprises two or more hydroxy groups and is selected from $-R^a-Y-R^b-(Z)_x$, R^f , $-C(O)R^f$, and $-C(O)-R^a-Y-R^b-(Z)_x$; and R^{16} is hydrogen or methyl. - 4. The glycopeptide of claim 3 wherein R¹⁵ is substituted alkyl, substituted alkenyl, substituted alkynyl, substituted cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, substituted alkyl-C(O)-, substituted alkenyl-C(O)-, substituted alkynyl-C(O)-, substituted cycloalkyl-C(O)-, substituted cycloalkenyl-C(O)-, aryl-C(O)-, heteroaryl-C(O)-, or heterocyclic-C(O)-; wherein R¹⁵ comprises two or more hydroxy groups. - 5. The glycopeptide of claim 3 wherein R¹⁵ is a group of formula -CH2-CH(OH)CH(OH)CH₂-Y-R^b-(Z)_x; wherein Y, R^b, Z, and x have the values defined in claim 1. - 6. The glycopeptide of claim 3 wherein R¹⁵ is a group of formula-CH2-CH(OH)CH(OH)CH₂-R¹⁷ wherein R¹⁷ is hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, or heterocyclic. 7. The glycopeptide of claim 1 which is a compound of formula II: wherein: R¹⁹ is hydrogen; R²⁰ is -R^a-Y-R^b-(Z)_x, R^f, -C(O)R^f, or -C(O)-R^a-Y-R^b-(Z)_x; and R^a, Y, R^b, Z, x, R^f, R³, and R⁵ have any of the values defined in claim 1; or a pharmaceutically acceptable salt, stereoisomer, or prodrug thereof. - 8. The glycopeptide of claim 7 wherein R^3 is OH. - 9. The glycopeptide of claim 7 wherein R⁵ is hydrogen. 11. 10. The glycopeptide of claim 27 wherein R^{19} is hydrogen; and R^{20} is selected from $-R^a-Y-R^b-(Z)_x$, R^f , $-C(O)R^f$, and $-C(O)-R^a-Y-R^b-(Z)_x$. The glycopeptide of claim 10 wherein R²⁰ is substituted alkyl, substituted - alkenyl, substituted alkynyl, substituted cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, substituted alkyl-C(O)-, substituted alkenyl-C(O)-, substituted alkynyl-C(O)-, substituted cycloalkyl-C(O)-, aryl-C(O)-, heteroaryl-C(O)-, or heterocyclic-C(O)-; wherein R¹⁵ comprises two or more hydroxy groups. - 12. The glycopeptide of claim 10 wherein R²⁰ is substituted alkyl, substituted alkenyl, substituted alkynyl, substituted alkyl-C(O)-, substituted alkenyl-C(O)-, substituted alkynyl-C(O)-; wherein R¹⁵ comprises two or more hydroxy groups. - 13. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of claim 1. - 14. The pharmaceutical composition of claim 13, which comprises a cyclodextrin. - 15. A method of treating a mammal having a bacterial disease, the method comprising administering to the mammal a therapeutically effective amount of a glycopeptide of claim 1. - 16. A method of treating a mammal having a bacterial disease, the method comprising administering to the mammal a therapeutically effective amount of a glycopeptide of claim 7. 17. A method of treating a mammal having a bacterial disease, the method comprising administering to the mammal a therapeutically effective amount of a pharmaceutical composition of claim 13.